Breakout Confirmation Using the RSI in Python.
How to Confirm a New Trend Using a Strategy on the RSI.
The relative strength index is a known contrarian indicator but can also be used to confirm a new trend by either surpassing its neutral zone or even by exiting the oversold and overbought levels. This article discusses the latter method in detail.
I have just released a new book after the success of the previous book. It features advanced trend following indicators and strategies with a GitHub page dedicated to the continuously updated code. Also, this book features the original colors after having optimized for printing costs. If you feel that this interests you, feel free to visit the below Amazon link, or if you prefer to buy the PDF version, you could contact me on LinkedIn.
The Relative Strength Index
First introduced by J. Welles Wilder Jr., the RSI is one of the most popular and versatile technical indicators. Mainly used as a contrarian indicator where extreme values signal a reaction that can be exploited. Typically, we use the following steps to calculate the default RSI:
Calculate the change in the closing prices from the previous ones.
Separate the positive net changes from the negative net changes.
Calculate a smoothed moving average on the positive net changes and on the absolute values of the negative net changes.
Divide the smoothed positive changes by the smoothed negative changes. We will refer to this calculation as the Relative Strength — RS.
Apply the normalization formula shown below for every time step to get the RSI.
The above chart shows the hourly values of the GBPUSD in black with the 13-period RSI. We can generally note that the RSI tends to bounce close to 25 while it tends to pause around 75. To code the RSI in Python, we need an OHLC array composed of four columns that cover open, high, low, and close prices.
def adder(data, times):
for i in range(1, times + 1):
new = np.zeros((len(data), 1), dtype = float)
data = np.append(data, new, axis = 1)
return data
def deleter(data, index, times):
for i in range(1, times + 1):
data = np.delete(data, index, axis = 1)
return data
def jump(data, jump):
data = data[jump:, ]
return data
def ma(data, lookback, close, where):
data = adder(data, 1)
for i in range(len(data)):
try:
data[i, where] = (data[i - lookback + 1:i + 1, close].mean())
except IndexError:
pass
data = jump(data, lookback)
return data
def ema(data, alpha, lookback, what, where):
alpha = alpha / (lookback + 1.0)
beta = 1 - alpha
data = ma(data, lookback, what, where)
data[lookback + 1, where] = (data[lookback + 1, what] * alpha) + (data[lookback, where] * beta)
for i in range(lookback + 2, len(data)):
try:
data[i, where] = (data[i, what] * alpha) + (data[i - 1, where] * beta)
except IndexError:
pass
return data
def rsi(data, lookback, close, where):
data = adder(data, 5)
for i in range(len(data)):
data[i, where] = data[i, close] - data[i - 1, close]
for i in range(len(data)):
if data[i, where] > 0:
data[i, where + 1] = data[i, where]
elif data[i, where] < 0:
data[i, where + 2] = abs(data[i, where])
lookback = (lookback * 2) - 1 # From exponential to smoothed
data = ema(data, 2, lookback, where + 1, where + 3)
data = ema(data, 2, lookback, where + 2, where + 4)
data[:, where + 5] = data[:, where + 3] / data[:, where + 4]
data[:, where + 6] = (100 - (100 / (1 + data[:, where + 5])))
data = deleter(data, where, 6)
data = jump(data, lookback)
return data
The Barrier Exit Strategy
One way of confirming the new trend using the RSI is to wait for the exit from the extreme level. We need to define what are extreme levels first.
An oversold level is typically below 30 and refers to a state of the market where selling activity was a bit extreme.
An overbought level is typically above 70 and refers to a state of the market where buying activity was a bit extreme.
Therefore, the barrier exit strategy has the following conditions:
Whenever the RSI exits the 30 level after having been below it, a bullish signal is generated.
Whenever the RSI exits the 70 level after having been above it, a bearish signal is generated.
def signal(Data, rsi_col, buy, sell):
Data = adder(Data, 10)
for i in range(len(Data)):
if Data[i, rsi_col] > lower_barrier and Data[i - 1, rsi_col] < lower_barrier and Data[i - 2, buy] == 0 and Data[i - 3, buy] == 0 and Data[i - 4, buy] == 0 and Data[i - 5, buy] == 0 :
Data[i, buy] = 1
elif Data[i, rsi_col] < upper_barrier and Data[i - 1, rsi_col] > upper_barrier and Data[i - 2, sell] == 0 and Data[i - 3, sell] == 0 and Data[i - 4, sell] == 0 and Data[i - 5, sell] == 0 :
Data[i, sell] = -1
return Data
The above signal chart shows the trades generated on the EURUSD hourly values using the barrier exit strategy. One of the disadvantages of the strategy is that it can be a little later than the extremes strategy, however, the confirmation part may make up for it in case the market stays overbought/oversold a long time.
The strategy can be confirmed by many other indicators such as moving averages and other indicators.
If you are also interested by more technical indicators and strategies, then my book might interest you:
Remember to always do your back-tests. You should always believe that other people are wrong. My indicators and style of trading may work for me but maybe not for you.
I am a firm believer of not spoon-feeding. I have learnt by doing and not by copying. You should get the idea, the function, the intuition, the conditions of the strategy, and then elaborate (an even better) one yourself so that you back-test and improve it before deciding to take it live or to eliminate it. My choice of not providing specific Back-testing results should lead the reader to explore more herself the strategy and work on it more.
One Last Word
I have recently started an NFT collection that aims to support different humanitarian and medical causes. The Society of Light is a set of limited collectibles which will help make the world slightly better as each sale will see a percentage of it sent directly to the charity attributed to the avatar. As I always say, nothing better than a bullet list to outline the benefits of buying these NFT’s:
High-potential gain: By concentrating the remaining sales proceedings on marketing and promoting The Society of Light, I am aiming to maximize their value as much as possible in the secondary market. Remember that trading in the secondary market also means that a portion of royalties will be donated to the same charity.
Art collection and portfolio diversification: Having a collection of avatars that symbolize good deeds is truly satisfying. Investing does not need to only have selfish needs even though there is nothing wrong with investing to make money. But what about investing to make money, help others, and collect art?
Donating to your preferred cause(s): This is a flexible way of allocating different funds to your charities.
A free copy of my book in PDF: Any buyer of any NFT will receive a free copy of my latest book shown in the link of the article.